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______________________________________________ 
1. Introduction: 

In the warm, late summer months between June and October, a killer swims in fresh water lakes and rivers 
in the United States. The amoeba Naegleria fowleri is commonly found in the sediment of natural warm bodies of 
water throughout the world, but it has also been observed in ditches, poorly maintained swimming pools, geothermal 
hot springs, warm water discharge from industrial plants, ground soil, and in rare cases, water heaters (Naegleria 
fowleri 2016).  The N. fowleri amoeba is a thermophile, meaning its optimum growth temperature is from 80°F 
(26.7°C) to 115°F (46°C) or higher (Yoder 2009). N. fowleri, or as it is sometimes referred “the brain-eating 
amoeba”, can only be contracted by the intake of infected fresh water through the nose, and once infected the 
amoeba makes its way to the brain, namely the frontal cortex, in search of a food source (Marciano-Cabral 2007). 

In response to amoebic presence, the body’s natural response causes inflammation leading to death, which 
is diagnosed as Primary Amoebic Meningoencephalitis (PAM) (Capewell 2014). The onset of symptoms can take 
only a few hours to a day to begin and the damage to the brain can kill its host in as little as 2 to 15 days, with early 
symptoms of this infection usually misdiagnosed as bacterial or viral meningitis which can also cause; severe 
headaches, fever, nausea, vomiting, and stiffness of the neck (Yoder 2009). Unfortunately when the progression of 
the infection worsens it is too late to treat. Hallucinations, seizures, and confusion mark the point in which the host 
has received permanent brain damage and the only way to diagnose this infection is to test samples of the spinal 
fluid for the amoeba (Capewell 2014). If diagnosed early, there is a protocol involving an experimental drug, 
miltefosine, which is currently being produced in Orlando, Florida that has been shown to kill the amoeba in lab 
tests and in humans in combination with induced chemical coma and therapeutic hypothermia which reduce swelling 
in the brain (Naegleria fowleri 2016).  The Center for Disease Control (CDC) began watch on this amoeba in 1989 
and in that time there have been 34 documented cases of PAM infection in Florida (Yoder 2009). The CDC has 
collected general data about confirmed cases, and have shown that PAM infections are most common among males 
aged 5-14 (Naegleria fowleri 2016). This project is designed to look at cases of PAM by N. fowleri in Florida 
employing biogeophysical proxy vegetation indices and temperature as cofactors for amoebic prevalence.  

A normalized difference vegetation index (NDVI) was generated using near infer-red (NIR) and red 
reflectance data to eco-geographically classify areas of vegetation at known locations of N. fowleri in Florida. VI 
utilizes red and NIR canopy reflectance or radiances in the form of ratios (Tucker 1979) or in linear combination 
(Richardson and Wiegand 1977). Brown et al. (2008) employed canonical correlation analyses to determine if a 
significant relationship existed between NDVI, disease/water stress index and distance to water at four local West 
Nile Virus competent vectors (Culex. pipiens, Cilex. restuans, Culex. salinarius, and Aedes. vexans). Their model 
determined a significant relationship existed between the geographically sampled (henceforth geosampled), 
explanatory, paramterizable, land use land cover (LULC) covariates and the mosquito habitat regressors (0.93, 
P=0.03). The final model, residual, diagnostic output explained 86% of the variance in the environmental and 
mosquito measures. Diuk-Wasser et al. (2006) developed multivariate regression models to predict high and low 
adult mosquito abundance sites for determining arboviralactivity in Fairfield County, Connecticut USA. The eco-
geographic, prognosticative models included non-forested LULC for Cx. pipiens, surface water and distance to 
estuaries for Cx. salinarius, surface water and grasslands/agriculture LULCs for Ae. vexans, distance to palustrine 
habitats for Culiseta melanura, and seasonal difference in the NDVI parameters.  

NDVI indices have been found to be well correlated with various vegetation LULC parameters including 
green leaf area, biomass, percent green cover, productivity, and photosynthetic activity (Colwell, 1974; Hatfield et 
al., 1984; Asrar et al., 1984; Sellers, 1985). The NDVI is generated by converting raw data into an entirely new 
image using algorithms to calculate the color value of each pixel [http://chesapeake.towson.edu/data/all_image.asp]. 
This type of product is especially useful in multi-spectral remote sensing since transformations can be created that 
highlight relationships and differences in spectral intensity across multiple bands of the electromagnetic spectrum.  

NDVI is calculated as a ratio between measured reflectivity in the red and near infra-red (NIR) portions. 
These two spectral bands are chosen because they are most affected by the absorption of chlorophyll in leafy green 
vegetation and by the density of green vegetation on the LULC surface (http://earthobservatory.nasa.gov) As a 
simple transformation of two spectral bands, NDVI are computed directly without any bias or assumptions regarding 
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plant physiognomy, LULC, soil type, or climatic conditions (Jackson and Huete 1991). NDVI calculated as: NDVI 
= (ρNIR - ρR)/ (ρNIR + ρR). 

To account for changing soil brightness, SAVI may be calculated utilizing an adjustment factor L that 
effectively shifts the origin of vegetation isolines in NIR/ (visible) VIS reflectance space. Because the NDVI does 
not account for variations in soil brightness (Huete et al. 1994) a darkening of the soil following a rainfall or 
periodic flooding will cause a change in NDVI that will be interpreted as a change in vegetation (Asner et al. 2003). 
SAVI is calculated using radiance, surface reflectance (r), using reflectance values in the red (R), and NIR spectral 
bands. The L factor is determined by the relative percentage of vegetation and is dependent on whether the soil is 
light or dark; it is used as an exponent assigned to the red band value in the denominator and as a multiplier (L+1) of 
the first term (Huete et al. 1992). 

Limitations, however, exist as a result of atmospheric influences and soft substrate differences. Atmospheric 
turbidity generally inhibits reliable measures of vegetation and may delay the detection of an onset of stress in 
discontinuous LULC canopies. An atmospherically resistant vegetation index (ARVI) was developed in Jacob et al. 
(2006) for remotely sensing vegetation LULC from the sub-meter resolution [0.61 meter (m)] QuickBird VIS and 
NIR LULC data. The index took advantage of the presence of the blue channel (0.45 to 0.52 μm) in the QuickBird 
sensor, in addition to the red and the NIR channels that composed the NDVI. The resistance of the ARVI to 
atmospheric effects (in comparison to the NDVI) is accomplished by a self-correction process for the atmospheric 
effect on the red channel, using the difference in the radiance between the blue and the red channels to correct the 
radiance in the red channel (Kaufman and Tanre 1992). Aerosols, absorbing gases such as water vapor, and 
undetected clouds affect upwelling radiances measured by satellite instruments (Hay et al. 1998). In Jacob et al. 
(2006) the ARVI was calculated employing irradiance, surface wavelength reflectance (r), and  reflectance values in 
the QuickBird blue channel (0.05 to 0.06 μm), red (R), and NIR spectral bands. The ARVI was defined as ARVI = 
(ρNIR - ρRB)/(ρNIR + ρRB)in ArcGIS  where the subscript RB denoted the R and blue bands (B) and γ was  the gamma 
value which was defined as:ρRB = ρR - γ(ρB - ρR)A single value of γ = 1.0 was used to substantially reduce the 
sensitivity of atmospheric effects. Gamma correction, or often simply gamma, is the name of a nonlinear operation 
used to encode and decode luminance or tristimulus values in video or still image systems (Jensen 2005). 

Thereafter the NDVI, SAVI, and ARVI calculated from the QuickBird satellite information were 
successfully overlaid onto eco-georeferenced, field-based data of the three grid-stratified, riceland, agro-ecosystem, 
eco-epidemiological agro-irrigated, village complex,  study sites. The vegetation indices (VI's) were used to select 
all paddy and canal habitats with low, intermediate and heavy vegetated values. A database was generated for each 
study site with the mean, minimum, maximum, and standard deviations for NDVI, SAVI, and ARVI aggregated to 
the riceland agro-village complex level. The VI datasets for the three study sites were then merged with 
entomological datasets representing, eco-georeferenced, malaria, mosquito Anopheles arabiensis, aquatic larval 
habitat, capture point, breeding foci, geo-spectrotemporally geosampled at the eco-epidemiological, study sites. The 
NDVI was sensitive to the presence of vegetation LULCs and were not affected differently by ecological changes at 
the three study sites. The change in the soil background caused by the transition in LULC throughout the crop 
season did not alter the red and NIR rice plant reflectance and calculated SAVI. Visually the data suggest that there 
was no higher soil influences in the SAVI as compared with the NDVI for all rice stages.  

In these analyses NDVI, SAVI, ARVI equations could not identify LULC change for making inferences of An. 
arabiensis aquatic,larval abundance and distribution. Many studies have found NDVI's to be unstable varying with 
soil, sun-view geometry, atmospheric conditions and the presence of dead material as well as changes within soil 
moisture (Sellers 1985; Jackson and Pinter 1986; Myneni et al. 1992). Factors that reduce reflectivity of soils in the 
visible region include soil moisture or self-shadow (Karnieli et al. 2001). NDVI equation has a simple open loop 
structure (no feedback) which renders it susceptible to large sources of error (Liu and Huete 1995). 

The SAVI may also exhibit asymptotic (saturated) signals over riceland areas decreasing atmospheric 
visibility with changing LULC during the crop season. Baret and Guyot (1991) expressed inconsistencies in SAVI 
especially in soils in which the slope is exactly unity and the intercept is zero. Bausch (1993) tested a step-wise 
variable L function in the SAVI but found no significant reduction in noise reduction. 

It was of interest to determine how the blue band inclusion into the VI would identify the riceland LULC's for 
making inferences of An. arabeinsis immature abundance. The resistance of the ARVI to atmospheric effects, in 
comparison to NDVI was accomplished by a self-correction process for the atmospheric effect on the QuickBird red 
channel in ArcGIS using the difference between the imager's blue and red channels to correct the radiance in the red 
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channel. The results suggest that the ARVI was not able to normalize atmospheric conditions in the eco—
georeferenced, ento-ecoepidemiological, riceland study sites. The percent atmospheric and noise in the ARVI was at 
the rice height of 0–1 for all LULC's. Overall the NDVI was not associated to rice height much higher than the 
SAVI for identifying LULC's in all three study sites. NDVI and SAVI exhibited decreasing percent error due to 
increasing rice height. At rice height beyond 50 cm all the NDVI and SAVI are the same. 

Regardless, prediction of VI associated with endemic areas of Naegleria fowleri foci may  be remarkably 
accurate bio-geophysical proxy VI, endmember  signature  may be  employable to infer vegetation LULC, properties 
by isolating the attributes of vegetation from other materials (e.g., soil or water) and for mapping unknown 
geosampled, eco-georeferenceable foci in a stochastic or deterministic interpolator. The appeal of a VI is its 
simplicity and its relationship either empirically or theoretically to biophysical LULC variables (Bannari et al. 
1995). VI’s have been proven to be well correlated with various vegetation parameters such as green biomass 
(Tucker et al 1986), chlorophyll concentration (Buschmann and Nagel 1993), leaf area index (LAI) (Asrar et al. 
1984),foliar loss and damage (Olgemann 1990), photosynthetic activity (Sellers 1985) and carbon fluxes (Tucker et 
al. 1986). Also, they have been found to be useful for different image analyses like crop classification (Ehrlich and 
Lambin 1996) and crop phenology (Co et al. 1985). 

Soil background conditions may exert considerable influence on partial discontinuous canopy, wavelength, 
LULC irradiance, spectra and the calculated VI signature may influence N. fowleri sites. Soft brightness influences 
have been noted in numerous studies where, for a given amount of vegetation, darker soil LULC geographically 
classified (henceforth geoclassified) substrates resulted in higher VI values when the ratio vegetation index (RVI = 
MR/red) or the NDVI --(NIR - red)/(NIR + red) = (RVI -1)/(RVI+I)] were used as vegetation measures (Colwell, 
1974). Huete et al. (1985) also found an opposite soil brightness influence on the Perpendicular Vegetation Index 
(PVI) such that brighter soils resulted in higher index values for a given quantity of incomplete vegetation-related 
LULC. The PVI of Richardson and Wiegand (1977) may be emplo the red and NIR bands to calculate the 
perpendicular distance between the vegetation spot on the NIR-Red scatterplot and the soil line. Hence, in LULC 
areas where there are considerable soil brightness variations in an eco-georeferenceable, N. fowleri sample site, 
moisture differences, roughness variations, shadow, or organic matter differences, there may be soil-induced 
influences on proxy VI signature, endmember LULC grid-stratifiable values. Soil influences on incomplete canopy 
spectra are partly due to a dependency of the soil background signal on the optical properties of the overlying 
canopy (Jackson et al., 1980; Huete, 1987). 

Differences in red and NIR flux transfers through a canopy for an eco-georeferenced, eco-epidemiological, 
N. fowleri, capture point, sample site may result in a complex soil-vegetation LULC interaction, which would make 
it difficult to subtract or correct for soil background influences. A non-continuous. vegetated canopy, grid-stratified, 
LULC geolocation intermittently surrounding a N. fowleri site may scatter and transmit a significant amount of NIR 
flux towards the soil surface, irradiating the soil underneath as well as in between individual plants. The amoeba 
may subsequently reflect part of this scattered and transmitted flux back toward the sensor in a manner dependent 
upon the optical properties of the soft surface. By contrast, red light may be strongly absorbed by the uppermost leaf 
layers of the canopy, and irradiance at the soil surface which may be limited at a capture point, N. fowleri eco-
epidemiological, sample site so that radiance may be received directly from the sun and sky through eco-
georefereneceable canopy gaps. 

Gap dynamics refers to the pattern of plant growth that occurs following the creation of a forest gap, (e.g., a 
local area of natural disturbance that results in an opening in the canopy of an eco-georefereneced, eco-
epidemiological N. fowleri sample site) Gap dynamics are a typical characteristic of both temperate and tropical 
forests and have a wide variety of causes and effects on urban and forest life (Kricher 2011). Gaps are the result of 
natural disturbances in forests, ranging from a large branch breaking off and dropping from a tree, to a tree dying 
then falling over, bringing its roots to the surface of the ground, to landslides bringing down large groups of trees. 
Because of the range of causes, gaps, therefore, have a wide range of sizes, including small and large gaps. 
Regardless of size, gaps may allow an increase in light as well as LULC changes in moisture and wind levels, 
leading to differences in microclimate conditions at an N. fowleri sample site compared to those from below the 
closed canopy; which may be generally cooler and more shaded. For gap dynamics to occur in naturally disturbed 
areas, either primary or secondarysuccession must occur (Hubbell and Foster 1986). 

Ecological secondary succession is much more common and pertains to the process of vegetation 
replacement after a natural disturbance. Secondary succession results in second-growth or secondary forest, which 
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currently covers more of the tropics than old-growth forest (Bazzaz and Pickett 1980). Since gaps let in more light 
they could create diverse microclimates for an N. fowleri capture point as they provide the ideal geolocation and 
conditions for rapid plant reproduction and growth. In fact, most plant species in the tropics are dependent, at least 
in part, on gaps to complete their life cycles (Bazzaz and Pickett 1980). 

The major ecophysiological processes of vegetation LULC including photosynthesis and 
evapotranspiration are determined by the vegetation biophysical parameters that describe the canopy structure 
(Tucker 1991).The NDVI is one of the most extensively applied vegetation indices related to Leaf area index (LAI) 
and primary production is one of the principal eco-biophysical parameters in climate, weather, and ecological 
studies, and has been routinely estimated from remote sensing measurements. LAI is defined as one half the total 
radiation intercepting leaf area per unit ground horizontal surface area (Gonsamo and Pellikka 2008). Several 
numerical models require a continuous field of high spatial and temporal resolution LAI measurements due to 
heterogeneity and size of vegetation or natural agricultural patches, and the large seasonal dynamics of vegetation. 
To fulfill these needs, the LAI retrieval methods in ArcGIS included the processing of the remotely sensed data 
expected to be efficient and convenient for the end users. 

Generally speaking, the success of LAI estimation from remotely sensed data remains cumbersome and 
there is always a need to calibrate remotely retrieved parameters with ground based observation (Jensen 2005). 
Jacob et al. (2015) demonstrated the feasibility of the large scale LAI inversion algorithms using red and NIR 
reflectance obtained from sub-meter spatial resolution satellite imagery [e.g., panchromatic sub-meter resolution( 
i.e., (QuickBird) data for optimally summarizing riverine, agro-village, trailing vegetation, Precambrian rock, 
tributary habitats of Similium damnosum s.l., a black fly vector of onchocerciasis (‘river  blindness”) The algorithms 
were developed based on the principle commonly employed for ground-based optical determination of LAI by 
applying Beer-Lambert’s law( see Appendix 1) and by assuming extinction coefficient for the gap fraction retrieved 
from spectral vegetation indices (SVIs). The Beer–Lambert law, also known as Beer's law, the Lambert–Beer law, 
or the Beer–Lambert–Bouguer law relates the attenuation of light to the properties of the material through which the 
light is traveling (Jensen 2005). 
  
 The results from Jacob et al. (2015) suggest that a regressed NDVI–LAI relationship can vary both 
seasonally and inter-annually in tune with the variations in phenological development of the trailing vegetation of a 
ento-ecoepidemiological, hyerproductive, capture point, eco-georeferenceable, S. damnsoum s.l. riverine tributary, 
breeding foci in response to temporal variations of environmental conditions. Strong linear relationships were 
obtained during the canopy trailing vegetation production and canopy leaf senescence periods sample frame but the 
relationship is poor during periods of maximum LAI, apparently due to the saturation of NDVI at high values of 
LAI. The NDVI–LAI relationship was found to be poor, R2 varied from 0.31 to 0.44 for different sources of NDVI, 
when all the data were pooled across the sample time frames apparently due to different leaf area development 
patterns seasonally. The strong exponential relationships between NDVI and biomass and NDVI and LAI suggest 
that NDVI saturates for higher values of biomass ( > 100 g/m2  ) and LAI ( > 2 m2 /m2  ) (Huete et al. 2002). The 
ento-ecoepidemiological, capture point S. damnsoum s.l. immature habitat was also affected by background NDVI, 
but this was minimized by applying relative NDVI. 
 
 Heilman and Kress (1987) investigated the differential rates of radiant flux penetration in incomplete cotton 
canopies and found the spectral response reflected from the soil surface to mimic that of green vegetation. Thus, 
regardless of the vegetation index tested, the soil-reflected signal may be indistinguishable from that of the 
vegetation signature for an eco-georeferenced, seasonal, N. fowleri sample site, foci. The soft component may render 
VIs from the amoeba "soft-dependent" because its magnitude may vary with the reflectance properties of the 
underlying soil. Huete et al. (1985) found that the sensitivity of vegetation indices to soil background was greatest in 
canopies with intermediate levels of vegetation cover (50% green cover). With low vegetation, grid-stratifiable, 
LULC amounts, there may not be enough discontinuous, canopy ‘greenness' at a N. fowleri , eco-epidemiological, 
eco-georeferenceable, sample site to impart a robust scattered, soil-reflected endmember (sub-pixel) signature while, 
at very high vegetation densities, there may not be enough soil signal emerging from the canopy to be of 
significance. At intermediate levels of LULC, geoclassified vegetation, however, significant scattering and 
transmission of NIR flux through the canopy may produce a soil-reflected spectral endmember LULC signature of a 
capture point N. fowleri sample site that may be strongly iterated. This reference signature may reveal 
ungeosampled, unknown sample sites of the amoeba when applied as a dependent variable in a stochastic or 
deterministic, explanatorial interpolator. 
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Even though ground based validation of satellite-derived indices of biomass is well 65 explored in other 
ecosystems (Soenen et al., 2010, Gamon et al., 1995) Pontailer et al. 2003 66 only a few studies have related plot 
level spectral reflectance indices to aboveground biomass) there has been no contribution in the literature on  
mapping N. fowleri .The purpose of this study was to model the soil brightness dependency of partially vegetated 
LULC discontinuous canopy spectra emitted from an eco-georeferenced, capture point, N. fowleri sample site in 
order to develop a simple "global"  VI that could account for dynamic soil-vegetation spectral behavior. We 
assumed that significant biophysical, eco-georferenceable, plant endmember ,LULC signature, geoclassified, 
parameters may be optimally forecasted in an ArcGIS cyberenvironment so as to identify unknown, ungeosampled 
N. fowleri sample site sites.  

The transformation technique presented in this study is an important step toward the establishment of 
simple global VI signature models that can adequately describe dynamic soft-vegetation systems for eco-graphically 
cartographically delineating a eco-georferenecable, eco-epidemiological, N. fowleri capture point, on a geoclassified 
grid-stratfied, remotely sensed LULC site. A SAVI eco-georeferenced N. fowleri LULC site map in particular may 
be useful as the model may correct for over brightness of soil in the data bands. 

 To assess the importance of the vegetation and temperature co-factors, linear and nonlinear regression 
models were constructed to determine the statistical significance of any perimeters within a Poissonian regression 
probability framework associated with optimally parameterizable covariate estimators of N. fowleri. In statistics, 
Poisson regression is a generalized linear model (GLM) form of regression analysis  employed to model count data 
and contingency tables(Cameron and Trivedi 1998). In statistics, the GLM is a flexible generalization of ordinary 
linear regression (OLS) that allows for response variables that have error distribution models other than a normal 
distribution. In statistics, a contingency table (also known as a cross tabulation or crosstab) is a type of table in a 
matrix format that displays the (multivariate) frequency distribution of the variables (Christensen 1997) In 
statistics, ordinary least squares (OLS) or linear least squares is a method for estimating the unknown parameters in 
a linear regression model, with the goal of minimizing the sum of the squares of the differences between the 
observed responses (values of the variable being predicted) in the given dataset and those predicted by a linear 
function of a set of explanatory variables(Freedman 2005). We assumed that cartographically, this relationship could 
be robustly illustratable as the sum of the squared vertical distances between each eco-georeferenced N. fowleri 
sample site, grid-stratifiable,LULC data point in a remotely sensed dataset and the corresponding endmember 
capture point on the regression line.  

The Poissonian regression assumed the N. fowleri response variable Y had a Poisson distribution, and 
assumed the logarithm of its expected value was able to be modeled by a linear combination of known 
environmental geosampled LULC parameters ( e.g., discontinuous canopy spectral, wavelength frequencies). A 
Poisson regression model is sometimes known as a log-linear model, especially when employed to model 
contingency tables (Haight 1967). A log-linear model is a mathematical model that takes the form of a function 
whose logarithm equals a linear combination of the parameters of the model, which makes it possible to apply 
(possibly multivariate) linear regression(Christensen 1997). 

Lastly an endmember, geoclassified LULC spectral signature of a confirmed infection geolocation was 
taken and run in ArcGIS using a hotspot analysis to create a kriged georeferenced N. fowleri map. In statistics, 
kriging or Gaussian process regression is a method for which iterable, quantitative, interpolative values  (soil 
adjusted vegetation N. fowleri signal) are modeled by a Gaussian process governed by prior covariances, as opposed 
to a piecewise-polynomial splinechosen to optimize smoothness of the fitted values (Cressie 
1993).In  mathematical field of numerical analysis, spline interpolation is a form of interpolation where the 
interpolant is a special type of piecewise polynomial called a spline (Cressie 1993) In mathematics, a polynomial is 
an expression consisting of variables (or indeterminates) and coefficients that involves only the operations 
of addition, subtraction, multiplication, and non-negative integer exponents of variables. (e.g., polynomial of a 
single indeterminate x is x2 − 4x + 7) A spline interpolation is often preferred over polynomial interpolationas  
the interpolation error can be made small even when employing low degree endmember signature, grid-stratified, 
geoclassified, LULC polynomials for the spline (Jacob et al. 2015), Spline interpolation avoids the problem 
of Runge's phenomenon, in which oscillation can occur between points when interpolating using high degree 
polynomials (Ronald S. (2004). Our assumption was that under suitable assumptions on the priors, kriging could 
render an optimal linear unbiased capture point for an N. fowleri sample site; eco-georeferenceable geolocation in 
ArcGIS employing a discontinuous proxy vegetation-related signature dependent variable (see Jacob et al. 2016, 
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Grifftih 2005). Interpolating methods based on other criteria such as smoothness of prevalence statistics or case 
distribution data may yield the most likely intermediate values for optimally identifying unknown, ungeosampled N. 
fowleri, sample site geolocations. In the mathematical field of numerical analysis, interpolation is a method of 
constructing new data points within the range of a discrete set of known data points (Cressie 1993).  

The basic idea of kriging a N. fowleri, vegetation, proxy, endmember signature is to prognosticate the value 
of a function at a given capture point by computing a weighted average of the known values of the function in the 
neighborhood of the point. The method is mathematically closely related to regression analysis. Both theories derive 
a best linear unbiased estimator, based on assumptions on covariances, make use of Gauss–Markov theorem to 
prove independence of the estimate and error, and make use of very similar formulae. 

In statistics, the Gauss–Markov theorem, states that in a linear regression model in which the errors have 
expectation zero and are uncorrelated and have equal variances, the best linear unbiasedestimator of the coefficients 
may be rendered  by the ordinary least squares (OLS) estimator, provided it exists (Aitken 1935). In statistics, OLS 
or linear least squares is a method for estimating the unknown parameters in a linear regression model, with the goal 
of minimizing the sum of the squares of the differences between the observed responses (values of the variable 
being predicted) in the given dataset and those predicted by a linear function of a set of explanatory variables( e.g., 
empirical, N. fowleri vegetation proxy signature,regressors). Visually this may be  seen as the sum of the squared 
vertical distances between each data point ( georeferenced N. fowleri capture point) in the dataset and the 
corresponding point on the regression line – the smaller the differences, the better the model fits the data. According 
to Jacob et al. 2009 the OLS estimator is consistent in an infectious epidemiological, linear dependent , forecast, 
vulnerability model when the regressors are exogenous, and optimal in the class of linear unbiased estimators when 
the errors are homoscedastic and serially uncorrelated. Under these conditions, the method of OLS would provides 
minimum-variance mean-unbiased estimation when the errors have finite variances. Under the additional 
assumption that the errors are normally distributed, OLS is the maximum likelihood estimator (Christensen, R., 
1997). 

In this research "best" was defined as giving the lowest variance of the estimate, as compared to other 
unbiased, linear estimators in the N. fowleri vegetation proxy signature, iterative, interpolative, explanatory model. 
The errors do not need to be normal, nor do they need to be independent and identically distributed (only 
uncorrelated with mean zero and homoscedastic with finite variance) in a geospectrotempoeal, endmember, 
signature interpolator ( Jacob et al. 2011). The requirement that the estimator be unbiased cannot be dropped in a VI 
biogeophysical, LULC model, since biased estimators exist with lower variance (Hay 1997). Kriging may be made 
for estimation of a single realization of a N. fowleri, LULC endemic signature random field, while regression models 
may be based on multiple observations of a multivariate county-level geosampled  dataset. 

Henceforth, our objective the objectives of this study were to: (a) construct LULC base maps from Google 
Earth TM data (Figure 1b) establish the sensitivities and dynamic ranges of NDVI, and SAVI signature  maps (b) 
examine spectral reflectance of vegetated surrounding using Landsat data, and (d) determine the environmental 
variables associated with distribution and abundance of  N. fowleri at the county-level in Florida. 
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2.Materials and Methods: 

2.1Study site; 
The geosampled, county-level, data for this project was acquired by phone interview from the Hillsborough Public 
Health office in Tampa, Florida, as counties with registered cases. This presented two problems the first being, due 
to the rarity of this type of infection, thorough documentation of cases was not implemented until the early 2000’s; 
so the data used in this project only included 4 confirmed cases for Orange County, Florida from 2000-2015. The 
second being that when a patient died from a PAM infection they were registered to their county of residence, not to 
the county in which they initially contracted the amoeba. Thus upon receiving this 'general data’, research into news 
outlets of cases matching the counties of the patients was conducted to find the location of infection. Many different 
news reports were analyzed, spanning the entirety of the patients’ infection, to obtain the most correct data and 
details of the case. 

After finding the most likely water source of infection from the ‘general data’ and news data, longitudes 
and latitudes, in decimal degrees, were ascertained via Google Earth based on the location of infection. These points 
were converted to an excel data table to be used in Statistical Analysis Software (SAS), and into a shape file to be 
used in GIS. 

2.2 Remote Sensing data:  
Landsat 7 images of the study site, encompassing the visible and near inferred (NIR) bands were acquired from 
https://landsat.usgs.gov/. TheLandsat Enhanced Thematic Mapper sensoris carried on Landsat 7, and images consist 
of eight spectral bands with a spatial resolution of 30 meters for Bands 1 to 7. The resolution for Band 8 
(panchromatic) is 15 meters (see Table 1). All bands can collect one of two gain settings (high or low) for increased 
radiometric sensitivity and dynamic range, while Band 6 collects both high and low gain for all scenes. The 
approximate scene size is 170 km north-south by 183 km east-west (106 mi by 114 mi). 

Table 1 Landsat 7 * ETM+ wave band data 

 
Bands 

Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.77-0.90 30 

Band 5 - Shortwave Infrared (SWIR) 1 1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 60 * (30) 

Band 7 - Shortwave Infrared (SWIR) 2 2.09-2.35 30 

Band 8 - Panchromatic .52-.90 15 
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2.4 LULC model: 

Spatial analysis was performed by synthesizing a gridded, LULC map employing high resolution, cloud-free 
Landsat 7 imagery available, from Earth Explorer, of the study area. The resulting LULC supervised classification 
showed the study site to contain four unique classification areas; (1) Urban, (2) Vegetation, (3) Ocean, and (4) 
Lakes. To assess the accuracy of the LULC classes, a method of empirically analysis was conducted by selecting the 
LULC classes and comparing them with reference data, in the form of google satellite imagery obtained online from 
Earth Explorer. To perform this analysis, a random selection of 25 pixels in each LULC class were assessed and 
compared to the satellite classification as in (Jacob 2008). 

2.5 Vegetation Indices: 

Disregarding weather conditions, land cover classification, plant physiognomy, and soil type, NDVI and SAVI were 
calculated in ArcMap 10.5.1® using Landsat 7 satellite captured images. Landsat 7 data is captured in 8 different 
bands of light, for the purpose of the conducted calculations the 3rd band, which corresponds to the red band of 
visible light, and the 4th band, which corresponds to the near infrared band, were used in both the NDVI and SAVI 

calculations utilizing the equations: 

 

NDVI values fall within a range of -1.0 and 1.0, with values 
closer to -1.0 indicating low levels of vegetation and values closer to 
1.0 indicating higher levels of vegetation (Tucker 1991). Soil adjusted 

vegetation indices in areas where vegetative cover is low (i.e., <40%), and the soil surface is exposed, the 
reflectance of light in the red and near infrared spectra can influence vegetation index values (Huete 1994). 

In previous research, Jacob et al. (2016), constructed multiple NDVI and NDVI-variant geographic maps 
using QuickBird visible and NIR data and ecogeoreferenced West Nile mosquito vector Cx. pipiens explanatory 
larval habitat predictor covariates geosampled in a mosquito abatement district in northern Illinois. This paper 
presented a model for the gap probability of a discontinuous vegetation canopy, such as forest, or shrubland. The 
negative exponential attenuation of light within individual plant canopies where a capture point Cx. pipienswas 
geosampled was assumed, and as such the problem of modeling the gap probability then become the problem of 
estimating the distribution of habitat distances within canopies  using theNDVI and NDVI-variant. This, was not 
difficult since the distribution of individual canopy sizes and shapes was known and individual canopies were 
randomly distributed but did not overlap. A comparison of modeled gap probabilities with observed gap 
probabilities for a pine stand showed good agreement for zenith angles of illumination up to about 45". Above 45", 
the fit worsened, presumably because the horizontal branch structure of the pine canopy at the  Cx. pripiens capture 
point was less attenuating as the illumination angle approached the horizon. The paper derives two simple indexes 
that are functions of leaf area index, leaf angle distribution, and count density (number per square unit of area) and 
size (base radius and height) of plant canopies associated to Cx, pipien capture points  (assumed to be spherical or 
ellipsoidal). These indexes were used 1) to assess quantitatively the difference between continuous and 
discontinuous models of the same translucent vegetationCx pipiens habitat canopy, thus revealing when the use of 
the more complex, discontinuous model is seasonally warranted; and 2) identify cases in which a simpler, 
discontinuous but opaque model will yield good results. Their models revealed that NDVI and SAVI parameters 
could quantify prolific Cx. pipienhabitats based on geo-spatiotemporal field geosampled, eco-
georeferenced,immature count data. Here, SAVI were computed, employing the equation above for this 
investigation. An adjustment factor (L) of 0.5 was used, as it was shown to reduce soil-induced noise throughout a 
range of vegetation densities. 

3. Results  
 The LULC map shown in Figure 2 was created in ArcGIS using DEM data and the supervised 
classification tool. All four of the geosampled, geospatially county-level, N. fowleri cases occurred in an area of 
water with surrounding vegetation. Recently,Jacob et al. (2015) ] modeled the reflectance of a black fly vector of  
onchocerciasis ,Similium damnsoums employing  trailing vegetation as a function of fixed signatures of foliage, 
grass, litter, and bare soil under sunlit and shaded conditions as weighted by their areal proportions within a sub-
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meter resolution  scene. The areal proportions were determined by a three-layer model (tree, shrub, and ground) A 
three-dimensional geometrical model  account fully for the shadowing of each layer upon the next and for the 
disappearance of shadows as illumination and viewing positions converge (hotspot effect).Here,a resultant map 
revealed that the, N. fowleri cases occurred in predominantly urban areas, this is most likely due to the nature of the 
study site rather than its significance with this amoeba. Orange County, Florida was chosen as the experimental 
location because it has the highest number of confirmed cases per zip code in Florida.   
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Figure 2: Supervised Classification of Naegleria fowleri cases in Orange County, Florida 2000-2015. 
 



International Journal of Geographic Information System                                                                       
Vol. 4, No. 3, October 2017, pp. 1-31                                                                                                   
Available Online at http://acascipub.com/Journals.php 
 

 

 

15 
Copyright © acascipub.com, all rights reserved.  

With conformation of the possible importance of vegetation as a cofactor for prevalence an NDVI map was 
modeled as shown in Figure 3. The NDVI map gave each geosampled, county-level positive infection location a 
NDVI score which was employed as a explicative regressor in the linear model for this experiment. NDVI scores are 
values given to a pixel using NIR and red reflectance bands to calculate the amount of light in each wavelength was 
absorbed by the chlorophyll in vegetation; by the nature of the equation shown above the NDVI score will fall 
between -1 and 1 with a positive score indicating more abortion of light in the NIR band and thus more green 
vegetation (Jacob 2016). 

 
Figure 3. NDVI map of N fowleri cases in Orange County, Florida 2000-2015. 

 SAVI vegetation maps such as the one shown in Figure 4 were adjusted for lower lying vegetation which is 
commonly observed in urban commercial and urban residential areas in Florida. From prior knowledge of the study 
site it was understood that an SAVI model would more accurately represent the type of relatively low-lying, sparse, 
over dispersed vegetation found in a large urban county. SAVI, like NDVI, is an index that measures the levels of 
absorption of light in the NIR and red bands (Tucker 1991, Huete 1994). However, the SAVI models were corrected 
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with an L value to mitigate the reflectance of bear soil and urban neighborhoods that may otherwise disrupt the 
calculation of the georeferenced N. fowleri sites. Both NDVI and SAVI scores were important data figures in the 
effort to understand if vegetation is indeed a cofactor to amoeba prevalence.    

 
Figure 4. SAVI map of N. fowleri cases in Orange County, Florida 2000-2015 

The relationship between county-level prevalence and each explanatory, individual, potential, N. 
fowlerigeosampled regressor was investigated by employing single variable regression analysis in PROC NL 
MIXED. The first line of the code began the PROC REG command. The second line specified the fixed portion of 
each, endemic, epidemiological risk model, [i.e., the model without the random intercept, value (i.e., xb)]. The third 
line of code created a value (i.e., rand) that was equal to the fixed part of the model (xb) plus a random intercept 
term u. The model statement specified that the parameterizable unbiased, explanative, covariate, geo-spatiotemporal 
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variable, holding the others fixed.(b) The slope of that line does not depend on the values of the other variables. 
(c)  The effects of different independent variables on the expected value of the dependent variable are additive.(ii) 
statistical independence of the errors (in particular, no correlation between consecutive errors in the case of time 
series data)(iii) homoscedasticity (constant variance) of the errors (a) versus time (in the case of time series data)(b) 
versus the prediction  (c) versus any independent variable(iv) normality of the error distribution.(Christensen, R., 
1997). If for example multiorrelinearity exists in a logistic regression, N. fowleri frequency landscape model, the 
vulnerable forecasts will be misspecified.  Even if an epidemiologist or other researcher is able tease out noisy 
variables in a forecast vulnerability, eco-epidemiologcal, N. fowleri model, the residuals would not be able to be 
eco-cartographically robustly illustratable, (e.g., percentage of discontinuous chlorophyll-A in a sparsely canopied 
georeferenced N. fowleri sampled, capture point). 

 

The results of the Poissonian model are shown in Figure 5. In probability theory and statistics, the Poisson 
distribution  is a discrete probability distribution that expresses the probability of a given number of events occurring 
in a fixed interval of time and/or space if these events occur with a known constant rate and independently of the 
time since the last event(Christensen, R., 1997).. The lag classes’ of the regression model show a two-tailed 
distribution of data. This may be because of non-normality caused by violations of assumption or it may be because 
of the nature of the data itself. 

 

Figure 5. Summary of  the  eigenfucntion decomposition autocorrelation  
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An ordinary kriging interpolation stochastic algorithm was employed to reveal unknown, un-gepsampled, 
N. fowleri, eco-georeferenceable, capture point. We made the assumption that there was a ``regionalized variable'' Z 

definable at each N. fowleri, sample point on a county map which had N data locations   and a 

value  at each geolocation . We derived the best linear unbiased estimator of z, which (i.e., ), at a geolocation 
capture point  x.  In the process of doing so, we discovered the necessity of making certain assumptions (ie.., 

intrinsic hypothesis') for quantitating the eco-georeferenced, capture point.  Note that the weights  and   were 

actually functions of both x and .  Our strategy was similar to Jacob et al. (2015). A linear estimate of the  was 

employed to determine the  such that was a minimum, and such that the proxy N. 

fowleri signature LULC estimator was unbiased:  For the latter condition, we 

introduced the assumption that  for all sampled N. fowleri, capture point, geolocations 

x and y. In so doing, a sufficient condition for unbiasedness became 

 

Since we considered only one eco-georeferenced, capture point, N. fowleri,   geolocation x, we suppressed 

the dependence of  on x and  . Because the weights were not fixed, but had to be recalculated at each 

geolocation we employed   as a response variable. Taking advantage of this constraint, the model revealed

 [3.1]. We minimized the function employing 

where z =z(x) was the true value at the county-level 
geolocation x. Expanding the first term we found that  the geosampled, forecast, vulnerability N. fowleri, eco-
epidemiological, autorrelated model revealed 

. Note now the model looked like:  

 
 

We replaced  by theeco-georferenced, capture point, N. fowleri, model 
endmember, grid-stratified, LULC, expansion employing the sum(3.1),and simplified the model to 

 

Differentiating with respect to  (for each ) and  led to the following linear system of 
equations:  
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Without further assumptions we iteratively quantitatively interpolated the N. fowleri endmember LULC 

signature employing the quantities and which were optimally derived from a 
theoretical variogram. In spatial statistics the theoretical variogram is a function describing the degree of spatial 
dependence of a spatial random field or stochastic process (Cressie 1993). We made the assumption that 

 existed in the model and was independent of an capture point, N. 
fowleri county-level,  eco-georeferenceable, geolocation (  ). This expression was then written  as 

 where e indicated a vector quantity (e.g.  ) in ArcGIS. 
  

The two assumptions we made (the one above, plus the earlier assumption that the mean is constant) 
together comprised the so-called intrinsic hypothesis, which must be satisfied in order to derive the ordinary kriging 
equations (Cressie 2003). Putting it all together, this system  derived a eco-georeferenceable, capture point, N. 
fowleri matrix which revealed 

 

 
 

which we rewrote concisely as  where  was the matrix of variograms ( 

),  was a column vector of 1's, and was a vector of variogram values relating the 
position at which one  could optimally estimate (x) a capture point,  N. fowleri data for determining unknown sample 

sitegeolocations using ( ): .Our strategy (expressed in mathematical terms) was as follows:

.The autocorrelation model was able to distinguish the irradiance frequencies 
rendered from the georeferenced sample capture point as shown in Figure 6. 
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4. Discussion 
Initially, Poisson regression was employed to model the geo-spatiotemporal zip code data at the county 

study site. Unfortunately, overdispersion in the zip code regression-related LULC coefficients suggested that the 
Poisson model was inappropriate for differentiating the county endemic, N. fowleri, prognosticative, explanatory, 
eco-georefernced, covariate, coefficient signature estimates. The Poisson probability regression residuals indicated 
an inappropriate model fit due to over dispersion caused by outliers. 

The extra-Poisson noise was detected in the variance estimates in the N. fowleri, model. A modification of 
the iterated re-weighted least square scheme and/or a negative binomial, non-homogenous, regression-based 
framework conveniently accommodates the extra-Poisson variation employing the sampled environments covariates 
(see Haight 1967). Operationally these models consisted of making iterated weighted least square fit to approximate  
normally distributed, explanatorily dependent, geo-spatiotemporal,  geosampled, N. fowleri -related, eco-
georeferenecable, explanatory, predictor, covariate coefficients based on observed rates and  their logarithm. 
Unfortunately, the variance of explanatory, diagnostic, capture point observations in log-linear equations are 
commonly assumed to be constant [Griffth 2003]. Subsequently, we assumed that introducing an extra-binomial 
variation scheme in a forecast, vulnerability, epidemiological, -related linear-logistic, N. fowleri, forecast model may 
be fitted for a Poissonian procedure. In so doing the outliers in the he Poisson-gamma mixture (negative binomial) 
distribution, N. fowleri, model was teased out and standard deviation was equivalent to the mean in the summary 
statement. 

 
NDVI was calculated using radiance, surface reflectance (p), or apparent reflectance (measured at the top 

of the atmosphere) values in the LandsatTM red and NIR spectral bands. The ratio of reflected radiance from the red 
and NIR bands was used to normalize illumination and topographic variation and to form the NDVI N. fowleri eco-
epidemiological data using the eco-geoerferenced, grid-stratified, LULC data. The difference of the Landsat bands 
was divided by their sum, which formed the functionally equivalent NDVI. This NDVI, over terrestrial surfaces of 
the study site, was constrained between 
0 and 1. The difference in reflectance was divided by the sum of the two reflectances. Raster modeling in ArcMap® 
included performing image differencing on NDVI layers, classifying the layers into different classes and calculating 
a wetness index using the Raster Calculator. NDVI was computed directly for the N. fowleri capture points without 
any bias or assumptions regarding plant physiognomy, land cover class, soil type or climatic conditions. A N. 
fowleri proxy signature was generated to account for changing soil brightness, SAVI was also calculated, utilizing 
an adjustment factor L that effectively shifted the origin of vegetation isolines in NIR/VIS reflectance space. 

 
The SAVI utilized a constant L to remove the soil background noise in the N. fowlerisampled site. For high 

vegetation cover, the value of L is 0.0, and L is 1.0 for low vegetation cover. For intermediate vegetation cover, L = 
0.5 is the value which is most widely used in generating SAVI (Huete, 1988). The appearance of L in the multiplier 
causes of SAVI have a range identical to the NDVI (-1.0 to1.0) The net result was an NDVI N. fowleri signature 
with an origin not at the point of zero. Red and NIR SAVI was calculated where L was a possible amoeba height 
adjustment factor that accounted for differential red and NIR. Since one of the objectives of this article was to find a 
self-adjustable L so as to increase the SAVI vegetation sensitivity for generating a robust N. fowleri signature, we 
experimentally increased the dynamic range and reduced the soil background effect In this research, L = 0.5 was 
used for the SAVI equation. 

 
A modified SAVI (MSAVI) that replaces the constant L in the SAVI equation with a variable L function 

may be constructed for obtaining an iteratively interpolative eco-georferenceable, N. fowleri, proxy endmember, 
LULC signature. The L function may be derivable by induction or by employing the product of the NDVI and 
weighted difference vegetation index (WDVI). Results based on ground and aircraft-measured, discontinuous 
canopies may be presented at a N. fowleri, eco-epidemiological,capture point. The MSAVI may be shown to 
increase the dynamic range of the vegetation signal while further minimizing the soil background influences, 
resulting in greater vegetation sensitivity as defined by a "vegetation signal" to "soil noise" ratio. 

 
Because it cannot be concluded if vegetation is an important cofactor to N. fowleri prevalence, future 

research may include time-series NDVI and SAVI models that may reveal even more robust landscape, explanative 
parameterizable,LULC covariants, that can be introduced into a stochastic or deterministic iteratable interpolator; in 
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Instrumentation 
Experimental measurements are usually made in terms of transmittance (T), which is defined as: 
T = I / Iowhere I is the light intensity after it passes through the sample and Io is the initial light 
intensity. The relation between A and T is: 
A = -log T = - log (I / Io). 
Absorption of light by a sample  

 

 
Modern absorption instruments can usually display the data as either transmittance, %-transmittance, or absorbance. 
An unknown concentration of an analyte can be determined by measuring the amount of light that a sample absorbs 
and applying Beer's law. If the absorptivity coefficient is not known, the unknown concentration can be determined 
using a working curve of absorbance versus concentration derived from standards.  

 
Derivation of the Beer-Lambert law 
The Beer-Lambert law can be derived from an approximation for the absorption coefficient for a molecule by 
approximating the molecule by an opaque disk whose cross-sectional area, , represents the effective area seen by 
a photon of frequency w. If the frequency of the light is far from resonance, the area is approximately 0, and if w is 
close to resonance the area is a maximum. Taking an infinitesimal slab, dz, of sample: 

 
 
Io is the intensity entering the sample at z=0, Iz is the intensity entering the infinitesimal slab at z, dI is the intensity 
absorbed in the slab, and I is the intensity of light leaving the sample. Then, the total opaque area on the slab due to 
the absorbers is  * N * A * dz. Then, the fraction of photons absorbed will be  * N * A * dz / A so, 
dI / Iz = -  * N * dz 
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Integrating this equation from z = 0 to z = b gives: 
ln(I) - ln(Io) = -  * N * b 
or - ln(I / Io) =  * N * b. 
Since N (molecules/cm3) * (1 mole / 6.023x1023 molecules) * 1000 cm3 / liter = c (moles/liter) and 2.303 * log(x) = 
ln(x) then 
- log(I / Io) =  * (6.023x1020 / 2.303) * c * b 
- log(I / Io) = A =  * b * c 
where  =  * (6.023x1020 / 2.303) =  * 2.61x1020 
Typical cross-sections and molar absorptivities are: 
                          (cm2)         (M-1 cm-1)      
absorption - atoms       10-12           3x108  
             molecules   10-16           3x104  
             infrared    10-19           3x10  
Raman scattering         10-29           3x10-9 

 
Limitations of the Beer-Lambert law 
The linearity of the Beer-Lambert law is limited by chemical and instrumental factors. Causes of nonlinearity 
include: 

 deviations in absorptivity coefficients at high concentrations (>0.01M) due to electrostatic interactions 
between molecules in close proximity 

 scattering of light due to particulates in the sample 

 fluorescence or phosphorescence of the sample 

 changes in refractive index at high analyte concentration 

 shifts in chemical equilibria as a function of concentration 

 non-monochromatic radiation, deviations can be minimized by using a relatively flat part of the absorption 
spectrum such as the maximum of an absorption band 

 stray light 
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